当前位置: 首页> 专利交易> 详情页
    待售中

    一种雷达相位噪声滤波方法、装置、交通工具及存储介质[ZH]

    专利编号: ZL202503032404

    收藏

    拟转化方式: 转让;普通许可;独占许可;排他许可

    交易价格:面议

    专利类型:-

    法律状态:授权

    技术领域:智能网联汽车

    发布日期:2025-03-03

    发布有效期: 2025-03-03 至 2022-01-30

    专利顾问 — 伍先生

    微信咨询

    扫码微信咨询

    电话咨询

    咨询电话

    18273488208

    专利基本信息
    >
    申请号 CN202210114020.6 公开号 CN114488032B
    申请日 2022-01-30 公开日 2024-09-24
    申请人 广州文远知行科技有限公司 专利授权日期 2024-09-24
    发明人 张任远;覃国宇;韩旭 专利权期限届满日 2022-01-30
    申请人地址 510000 广东省广州市中新广州知识城九佛建设路333号自编687室 最新法律状态 授权
    技术领域 智能网联汽车 分类号 G01S7/36
    技术效果 精确性 有效性 有效(授权、部分无效)
    专利代理机构 深圳市易美诺知识产权代理事务所(普通合伙) 44520 代理人 沈荣彬;朱为甫
    专利技术详情
    >
    01

    专利摘要

    本发明公开了一种雷达相位噪声滤波方法、装置、交通工具及存储介质,方法包括:接收第一雷达数据,对第一雷达数据进行采样得到第二雷达数据;计算第二雷达数据在各个雷达数据组中出现的第一概率;根据第一概率计算第二雷达数据的第一信息熵,保存第一信息熵到第一历史信息熵数组;根据第一信息熵判断第二雷达数据是否存在相位噪声;如果第二雷达数据存在相位噪声,对第一雷达数据进行相位噪声滤除,得到第三雷达数据。通过本发明实施例,利用信息熵量化雷达数据分散程度,在采样后的各帧数据找到有相位噪声存在的数据帧,找到相位噪声并对噪声进行剔除。解决了毫米波雷达中相位噪声影响导致误报、漏报的问题,提高了数据质量和准确性。
    展开 >
    02

    专利详情

    技术领域 本发明涉及交通工具技术领域,尤其涉及一种雷达相位噪声滤波方法、装置、交通工具及存储介质。 背景技术 毫米波雷达实际使用过程中会遇到强反射物体,会在某个面(方向上产生)产生连续、不规则的噪点,影响系统对物体和环境的判断,导致误报。相位噪声广泛存在于毫米波雷达中,是基带噪声被放大而产生大规模噪点的一种情况,绝大部分来自外界和自身对采样器产生的大量饱和信号,对采集的数据产生大量噪声点。因此滤波对降噪有很大的必要,对于自动驾驶信息感知来说,可以大大提高毫米波雷达的性能,提高目标的信噪比,准确性,提高检测几率。 现有技术中基于毫米波雷达反射回波强度的OS_CFAR方法不能完全识别相位噪声,并且会将实际存在的强反射物体去掉。 发明内容 本发明的主要目的在于提供一种雷达相位噪声滤波方法、装置、交通工具及存储介质,旨在解决现有技术中不能完全识别相位噪声且会将实际存在的强反射物体去掉的问题。 为实现上述目的,本发明提供了一种雷达相位噪声滤波方法,所述方法包括以下步骤: 接收第一雷达数据,对所述第一雷达数据进行采样得到第二雷达数据; 计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到; 根据所述第一概率计算所述第二雷达数据的第一信息熵,保存所述第一信息熵到第一历史信息熵数组; 根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声; 如果所述第二雷达数据存在相位噪声,对所述第一雷达数据进行相位噪声滤除,得到第三雷达数据。 可选地,所述根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声,包括以下步骤: 获取所述第一历史信息熵数组包含的信息熵的数量,判断所述数量是否大于第一阈值; 如果所述数量小于所述第一阈值,则判断所述第一信息熵是否大于第二阈值,如果所述第一信息熵大于第二阈值,则确定所述第二雷达数据存在相位噪声;否则确定所述第二雷达数据不存在相位噪声; 如果所述数量大于等于所述第一阈值,则根据有序恒虚警率判断所述第二雷达数据是否存在相位噪声。 可选地,所述根据有序恒虚警率判断所述第二雷达数据是否存在相位噪声,包括以下步骤: 将所述第一历史信息熵数组的信息熵进行升序排序,得到第二历史信息熵数组; 从所述第二历史信息熵数组获取任一个信息熵作为第三阈值; 将所述第三阈值乘以一个预设系数得到第四阈值,所述预设系数根据恒虚警率得到; 判断所述第一信息熵是否大于第四阈值,如果所述第一信息熵大于第四阈值,则所述第二雷达数据存在相位噪声。 可选地,所述对所述第一雷达数据进行相位噪声滤除, 把所述第一雷达数据投影到水平角纬度,得到水平角雷达数据; 计算所述水平角雷达数据在第二雷达数据组中出现的第二概率; 根据所述第二概率计算所述水平角雷达数据的第二信息熵; 使用所述第二信息熵,根据有序恒虚警率判断所述水平角雷达数据是否存在相位噪声; 如果所述水平角雷达数据存在相位噪声,获取所述水平角雷达数据中距离最小的数据点。 可选地,所述第一雷达数据包括以下的至少一种:水平角、高程角、距离、速度、回波强度。 可选地,所述对所述第一雷达数据进行采样得到第二雷达数据,包括以下步骤: 使用等间距取值采样,每N(N大于等于1)个数据取一个数据点;或, 使用均匀采样,每个预设空间中取一个数据点。 可选地,所述计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到,包括以下步骤: 统计所述第二雷达数据在所述雷达数据组中出现的次数; 将所述次数除以所述第二雷达数据的总点数,得到所述第二雷达数据在各个雷达数据组中出现的第一概率。 此外,为实现上述目的,本发明还提出一种雷达相位噪声滤波装置,所述雷达相位噪声滤波装置包括: 数据采样单元,用于接收第一雷达数据,对所述第一雷达数据进行采样得到第二雷达数据; 概率计算单元,用于计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到; 信息熵计算单元,用于根据所述第一概率计算所述第二雷达数据的第一信息熵,保存所述第一信息熵到第一历史信息熵数组; 噪声判断单元,用于根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声; 噪声滤除单元,用于如果所述第二雷达数据存在相位噪声,对所述第一雷达数据进行相位噪声滤除,得到第三雷达数据。 此外,为实现上述目的,本发明还提出一种交通工具,所述交通工具包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的相位噪声滤波程序,所述相位噪声滤波程序配置为实现如上文所述雷达相位噪声滤波方法的步骤。 此外,为实现上述目的,本发明还提出一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上文所述的雷达相位噪声滤波方法的步骤。 本发明利用信息熵量化毫米波雷达数据分散程度,先在采样的各帧上判断是否有相位噪声的存在,找到有相位噪声存在的数据帧,然后计算数据帧中各水平角的信息熵,找到相位噪声并对噪声进行剔除。解决了毫米波雷达中相位噪声影响导致误报漏报的问题,提高了数据质量和准确性。 附图说明 图1为本发明提供的一种雷达相位噪声滤波方法的一个流程示意图。 图2为本发明提供的判断相位噪声的一个流程示意图。 图3为本发明提供的前序恒虚警率算法判断相位噪声的一个流程示意图。 图4为本发明提供的相位噪声滤除的一个流程示意图。 图5为本发明提供的概率计算的一个流程示意图。 图6为本发明雷达相位噪声滤波装置实施例的结构框图。 图7是本发明实施例方案涉及的硬件运行环境的交通工具结构示意图。 本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。 具体实施方式 为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅以解释本发明,并不用于限定本发明。 在后续的描述中,使用用于表示元件的诸如 " 模块 " 、 " 部件 " 或 " 单元 " 的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此, " 模块 " 、 " 部件 " 或 " 单元 " 可以混合地使用。 需要说明的是,本发明的说明书和权利要求书及上述附图中的术语 " 第一 " 、 " 第二 " 等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。 在一个实施例中,如图1所示,本发明提供一种雷达相位噪声滤波方法,所述方法包括: 步骤S101、接收第一雷达数据,对所述第一雷达数据进行采样得到第二雷达数据。 获取安装在车辆(如自动驾驶车辆)的毫米波雷达数据,毫米波雷达数据一般包括:水平角、高程角、距离、速度、回波强度。毫米波雷达对每一个物体进行测量,得到该物体的雷达数据。如下表所示 水平角 高程角 距离(m) 速度(m/s) 回波强度(分贝) 98°20′48″ 46°28′32″ 98 25 35 45°23′41″ 42°21′52″ 86 21 40 58°19′79″ 23°19′37″ 99 29 41 89°10′47″ 37°25′45″ 125 12 28 毫米波雷达采集的数据较大,对所有数据都进行相位噪声检测处理能力要求较高、处理时长较长。因此在车载ECU(计算单元)无法对所有采集的数据进行处理,需要对由于采集的数据进行采样,只对采样的部分数据进行处理。通过采样可以减少数据点数,加快判断的速度。可以使用等间距取值,每N(N大于等于1)个数据取一个数据;也可以均匀采样,以预设空间(如L*L*L的空间)中取一个数据点。 采样后的数据如下表所示: 水平角 高程角 距离(m) 速度(m/s) 回波强度(分贝) 98°20′48″ 46°28′32″ 98 25 35 58°19′79″ 23°19′37″ 99 29 41 步骤S102、计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到。 设置雷达数据组,每个雷达数据组都对应一个宽度(即数据范围),分组宽度越大数据信息熵对改数值的变化越不明显,分组宽度数据越小信息熵对改数值的变化越明显。噪点在哪个维度分布越不均匀,该维度的分组宽度越小。雷达数据分组就是把点云根据数据属性的宽度进行分类,比如水平角1~3度,高程角4~5度,距离50~60,速度10~15范围内所有的点为一个分组。水平角、高程角、距离定义了空间内的一个区域,在这个区域里面,不同速度范围的点云又是不同的分组。雷达数据分组,如下表所示 每个雷达数据组的雷达数据属性宽度根据实际情况进行设置,本技术方案不进行限定。 对每个采样后的雷达数据计算在对应的雷达数据组中出现的概率,具体参见图5所示流程。 步骤S501、统计所述第二雷达数据在所述雷达数据组中出现的次数。 统计采样后的雷达数据在对应的雷达数据组中出现的次数,如下表所示: 雷达数据组 次数 雷达数据组A 53 雷达数据组B 45 雷达数据组C 86 雷达数据组D 76 步骤S502、将所述次数除以所述第二雷达数据的总点数,得到所述第二雷达数据在各个雷达数据组中出现的第一概率。 将上一步得到的各个雷达数据组的次数除以采样后的雷达数据的总点数,得到数据出现在各个雷达数据组的概率。如下表所示: 雷达数据组 次数 采样数据点数量 概率 雷达数据组A 53 352 0.151 雷达数据组B 45 352 0.128 雷达数据组C 86 352 0.244 雷达数据组D 76 352 0.216 步骤S103、根据所述第一概率计算所述第二雷达数据的第一信息熵,保存所述第一信息熵到第一历史信息熵数组。 信息熵:接收的每条消息中包含的信息的平均量, " 信息 " 代表来自分布或数据流中的事件、样本或特征。信息熵可以理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。信息熵计算公式如下: 将步骤S102计算的概率P(xi)带入上述公式,即可求得该帧数据的信息熵。如通过上述公式计算得到的信息熵为:0.531,信息熵表示的数据的离散程度,有相位噪声的数据帧信息熵明显高于正常数据。且由于计算使用的是概率,采样前后信息熵的变化不大,可以用做是否存在噪声的判断。 将求得的信息熵放到历史信息熵数组中,数组维持一定长度,数据组满时舍弃最先放进的信息熵,再放进最新的信息熵,类似一个新进新出的队列。数组的长度,可以根据实际需求进行设置,如数组长度为200。具体数组长度,本技术方案不进行限定。 步骤S104、根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声。 根据信息熵判断采样后的雷达数据是否存在相位噪声,具体步骤参考图2所述流程。 步骤S201、获取所述第一历史信息熵数组包含的信息熵的数量,判断所述数量是否大于第一阈值。 步骤S202、如果所述数量小于所述第一阈值,则判断所述第一信息熵是否大于第二阈值,如果所述第一信息熵大于第二阈值,则确定所述第二雷达数据存在相位噪声;否则确定所述第二雷达数据不存在相位噪声。 获取当前历史信息熵数组中已保存的信息熵数量,然后判断信息熵数量是否大于某个数组阈值(如100)。当信息熵数量小于该阈值时,表示当前毫米波雷达已获取的数据点数较少,还无法使用前序恒虚警率算法进行判断是否有相位噪声,此时只能根据经验值判断是否存在相位噪声。 根据经验,判断当前毫米波雷达的雷达数据是否存在相位噪声。判断该雷达数据(水平角、高程角、距离、速度、回波强度)计算得到的信息熵是否大于某个阈值,如果信息熵大于该阈值,则表示该雷达数据存在相位噪声;如果该信息熵小于等于该阈值,则表示该雷达数据不存在相位噪声。 步骤S203、如果所述数量大于等于所述第一阈值,则根据有序恒虚警率判断所述第二雷达数据是否存在相位噪声。 获取当前历史信息熵数组中已保存的信息熵数量,然后判断信息熵数量是否大于某个数组阈值(如100)。当信息熵数量大于等于该阈值时,表示当前毫米波雷达已获取的数据点数较多,可以使用前序恒虚警率算法进行判断是否有相位噪声。根据前序恒虚警率算法判断是否有相位噪声,参见图3所示流程。 步骤S301、将所述第一历史信息熵数组的信息熵进行升序排序,得到第二历史信息熵数组。 将历史信息熵数组中的信息熵按从小到大进行排序,得到排序后的排序信息熵数组。 步骤S302、从所述第二历史信息熵数组获取任一个信息熵作为第三阈值。 排序信息熵数组中信息熵的数量为N(N大于等于1)时,K=3/4*N,获取排序信息熵数组中第K个信息熵作为信息熵阈值。K值也可以通过其他方式获取,如获取排序信息熵数组中间的信息熵作为信息熵阈值。优先通过K=3/4*N方式获取信息熵阈值。 步骤S303、将所述第三阈值乘以一个预设系数得到第四阈值,所述预设系数根据恒虚警率得到。 获取毫米波雷达的恒虚警率,然后根据该恒虚警率得到一个预设系数Aos值。将步骤S302中获取的信息熵阈值乘以Aos值。 步骤S304、判断所述第一信息熵是否大于第四阈值,如果所述第一信息熵大于第四阈值,则所述第二雷达数据存在相位噪声。 判断采样后的毫米波雷达数据的信息熵是否大于步骤S302中获取的信息熵阈值乘以Aos值后的信息熵阈值,如果大于,则表示采样后的毫米波雷达数据存在相位噪声;否则不存在相位噪声。 步骤S105、如果所述第二雷达数据存在相位噪声,对所述第一雷达数据进行相位噪声滤除,得到第三雷达数据。 如果采样后的毫米波雷达数据存在相位噪声,则需要对采样前的毫米波雷达数据进行相位噪声滤除,得到滤除相位噪声的毫米波雷达数据。滤除相位噪声,参见图4所示流程图。 步骤S401、把所述第一雷达数据投影到水平角纬度,得到水平角雷达数据。 将毫米波雷达采集的雷达数据,按一定的水平角范围划分,得到该水平角包含的雷达数据。如毫米波雷达的探测范围为120度,把120度按每隔1度进行划分,得到120个水平角;得到每个水平角内的雷达数据。如下表所示: 步骤S402、计算所述水平角雷达数据在第二雷达数据组中出现的第二概率。 设置雷达数据组,每个雷达数据组都对应一个宽度(即数据范围),分组宽度越大数据信息熵对改数值的变化越不明显,分组宽度数据越小信息熵对改数值的变化越明显。噪点在哪个维度分布越不均匀,该维度的分组宽度越小。雷达数据分组就是把点云根据数据属性的宽度进行分类,比如水平角1~3度,高程角4~5度,距离50~60,速度10~15范围内所有的点为一个分组。水平角、高程角、距离定义了空间内的一个区域,在这个区域里面,不同速度范围的点云又是不同的分组。雷达数据分组,如下表所示 每个雷达数据组的雷达数据属性宽度根据实际情况进行设置,本技术方案不进行限定。 对每个水平角内的雷达数据计算在对应的雷达数据组中出现的概率,具体参见图5所示流程。 步骤S501、统计所述第二雷达数据在所述雷达数据组中出现的次数。 统计采样后的雷达数据在对应的雷达数据组中出现的次数,如下表所示: 雷达数据组 次数 雷达数据组A 152 雷达数据组B 89 雷达数据组C 97 雷达数据组D 56 步骤S502、将所述次数除以所述第二雷达数据的总点数,得到所述第二雷达数据在各个雷达数据组中出现的第一概率。 将上一步得到的各个雷达数据组的次数除以采样后的雷达数据的总点数,得到数据出现在各个雷达数据组的概率。如下表所示: 雷达数据组 次数 采样数据点数量 概率 雷达数据组A 152 658 0.231 雷达数据组B 89 658 0.135 雷达数据组C 97 658 0.147 雷达数据组D 56 658 0.085 步骤S403、根据所述第二概率计算所述水平角雷达数据的第二信息熵。 信息熵:接收的每条消息中包含的信息的平均量, " 信息 " 代表来自分布或数据流中的事件、样本或特征。信息熵可以理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。信息熵计算公式如下: 将步骤S402计算的水平角内的雷达数据的概率P(xi)带入上述公式,即可求得该帧数据的信息熵。如通过上述公式计算得到的信息熵为:0.476,信息熵表示的数据的离散程度,有相位噪声的数据帧信息熵明显高于正常数据。且由于计算使用的是概率,采样前后信息熵的变化不大,可以用做是否存在噪声的判断。 将求得的信息熵放到历史信息熵数组中,数组维持一定长度,数据组满时舍弃最先放进的信息熵,再放进最新的信息熵,类似一个新进新出的队列。数组的长度,可以根据实际需求进行设置,如数组长度为200。具体数组长度,本技术方案不进行限定。 步骤S404、使用所述第二信息熵,根据有序恒虚警率判断所述水平角雷达数据是否存在相位噪声。 根据前序恒虚警率判断是否有相位噪声,参见图3所示流程。 步骤S301、将所述第一历史信息熵数组的信息熵进行升序排序,得到第二历史信息熵数组。 将历史信息熵数组中的信息熵按从小到大进行排序,得到排序后的排序信息熵数组。 步骤S302、从所述第二历史信息熵数组获取任一个信息熵作为第三阈值。 排序信息熵数组中信息熵的数量为N(N大于等于1)时,K=3/4*N,获取排序信息熵数组中第K个信息熵作为信息熵阈值。K值也可以通过其他方式获取,如获取排序信息熵数组中间的信息熵作为信息熵阈值。优先通过K=3/4*N方式获取信息熵阈值。 步骤S303、将所述第三阈值乘以一个预设系数得到第四阈值,所述预设系数根据恒虚警率得到。 获取毫米波雷达的恒虚警率,然后根据该恒虚警率得到一个预设系数Aos值。将步骤S302中获取的信息熵阈值乘以Aos值。 步骤S304、判断所述第一信息熵是否大于第四阈值,如果所述第一信息熵大于第四阈值,则所述第二雷达数据存在相位噪声。 判断水平角内的毫米波雷达数据的信息熵是否大于步骤S302中获取的信息熵阈值乘以Aos值后的信息熵阈值,如果大于,则表示水平角内的毫米波雷达数据存在相位噪声;否则不存在相位噪声。 步骤S405、如果所述水平角雷达数据存在相位噪声,获取所述水平角雷达数据中距离最小的数据点。 根据步骤S404判断某个水平角内的毫米波雷达数据存在相位噪声后,获取该水平角内的雷达数据点距离最近的数据点,其他全部舍弃。即一般相位噪声中只有最靠近雷达的几个点是实际存在的点。 获取与毫米波雷达最近的数据库,具体距离可以根据事情情况件设置,如距离毫米波雷达50cm已内的数据点。本技术方案不断具体数据进行限定,可以根据实际情况进行设置最近的距离。 重复步骤S402~S405,对每个水平角内的毫米波雷达数据进行相位噪声滤除,得到滤除相位噪声的毫米波雷达数据。 本发明实施例,利用信息熵量化毫米波雷达数据分散程度,先在采样的各帧上判断是否有相位噪声的存在,找到有相位噪声存在的数据帧,然后计算数据帧中各水平角的信息熵,找到相位噪声并对噪声进行剔除。解决了毫米波雷达中相位噪声影响导致误报漏报的问题,提高了数据质量和准确性。 此外,本发明实施例还提出一种雷达相位噪声滤波装置,参照图6,所述装置包括: 数据采样单元10,用于接收第一雷达数据,对所述第一雷达数据进行采样得到第二雷达数据; 概率计算单元20,用于计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到; 信息熵计算单元30,用于根据所述第一概率计算所述第二雷达数据的第一信息熵,保存所述第一信息熵到第一历史信息熵数组; 噪声判断单元40,用于根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声; 噪声滤除单元50,用于如果所述第二雷达数据存在相位噪声,对所述第一雷达数据进行相位噪声滤除,得到第三雷达数据。 本发明实施例,利用信息熵量化毫米波雷达数据分散程度,先在采样的各帧上判断是否有相位噪声的存在,找到有相位噪声存在的数据帧,然后计算数据帧中各水平角的信息熵,找到相位噪声并对噪声进行剔除。解决了毫米波雷达中相位噪声影响导致误报漏报的问题,提高了数据质量和准确性。 参照图7,图7为本发明实施例方案涉及的硬件运行环境的交通工具的结构示意图。 如图7所示,该交通工具可以包括:处理器1001,例如CPU,通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI、4G、5G接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。 本领域技术人员可以理解,图7中示出的结构并不构成对交通工具的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。 如图7所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及雷达相位噪声滤波程序。 在图7所示的交通工具中,网络接口1004主要用于与外部网络进行数据通信;用户接口1003主要用于接收用户的输入指令;交通工具通过处理器1001调用存储器1005中存储的雷达相位噪声滤波程序,并执行以下操作: 接收第一雷达数据,对所述第一雷达数据进行采样得到第二雷达数据; 计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到; 根据所述第一概率计算所述第二雷达数据的第一信息熵,保存所述第一信息熵到第一历史信息熵数组; 根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声; 如果所述第二雷达数据存在相位噪声,对所述第一雷达数据进行相位噪声滤除,得到第三雷达数据。 可选地,所述根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声,包括以下步骤: 获取所述第一历史信息熵数组包含的信息熵的数量,判断所述数量是否大于第一阈值; 如果所述数量小于所述第一阈值,则判断所述第一信息熵是否大于第二阈值,如果所述第一信息熵大于第二阈值,则确定所述第二雷达数据存在相位噪声;否则确定所述第二雷达数据不存在相位噪声; 如果所述数量大于等于所述第一阈值,则根据有序恒虚警率判断所述第二雷达数据是否存在相位噪声。 可选地,所述根据有序恒虚警率判断所述第二雷达数据是否存在相位噪声,包括以下步骤: 将所述第一历史信息熵数组的信息熵进行升序排序,得到第二历史信息熵数组; 从所述第二历史信息熵数组获取任一个信息熵作为第三阈值; 将所述第三阈值乘以一个预设系数得到第四阈值,所述预设系数根据恒虚警率得到; 判断所述第一信息熵是否大于第四阈值,如果所述第一信息熵大于第四阈值,则所述第二雷达数据存在相位噪声。 可选地,所述对所述第一雷达数据进行相位噪声滤除, 把所述第一雷达数据投影到水平角纬度,得到水平角雷达数据; 计算所述水平角雷达数据在第二雷达数据组中出现的第二概率; 根据所述第二概率计算所述水平角雷达数据的第二信息熵; 根据所述第二信息熵,使用前序恒虚警率算法判断所述水平角雷达数据是否存在相位噪声; 如果所述水平角雷达数据存在相位噪声,获取所述水平角雷达数据中距离最小的数据点。 可选地,所述第一雷达数据包括以下的至少一种:水平角、高程角、距离、速度、回波强度。 可选地,所述对所述第一雷达数据进行采样得到第二雷达数据,包括以下步骤: 使用等间距取值采样,每N(N大于等于1)个数据取一个数据点;或, 使用均匀采样,每预设空间中取一个数据点。 可选地,所述计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到,包括以下步骤: 统计所述第二雷达数据在所述雷达数据组中出现的次数; 将所述次数除以所述第二雷达数据的总点数,得到所述第二雷达数据在各个雷达数据组中出现的第一概率。 本发明实施例,利用信息熵量化毫米波雷达数据分散程度,先在采样的各帧上判断是否有相位噪声的存在,找到有相位噪声存在的数据帧,然后计算数据帧中各水平角的信息熵,找到相位噪声并对噪声进行剔除。解决了毫米波雷达中相位噪声影响导致误报漏报的问题,提高了数据质量和准确性。 此外,本发明实施例还提出一种计算机可读存储介质,计算机可读存储介质上存储有雷达相位噪声滤波程序,雷达相位噪声滤波程序被处理器执行时实现如下操作: 接收第一雷达数据,对所述第一雷达数据进行采样得到第二雷达数据; 计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到; 根据所述第一概率计算所述第二雷达数据的第一信息熵,保存所述第一信息熵到第一历史信息熵数组; 根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声; 如果所述第二雷达数据存在相位噪声,对所述第一雷达数据进行相位噪声滤除,得到第三雷达数据。 可选地,所述根据所述第一信息熵判断所述第二雷达数据是否存在相位噪声,包括以下步骤: 获取所述第一历史信息熵数组包含的信息熵的数量,判断所述数量是否大于第一阈值; 如果所述数量小于所述第一阈值,则判断所述第一信息熵是否大于第二阈值,如果所述第一信息熵大于第二阈值,则确定所述第二雷达数据存在相位噪声;否则确定所述第二雷达数据不存在相位噪声; 如果所述数量大于等于所述第一阈值,则根据有序恒虚警率判断所述第二雷达数据是否存在相位噪声。 可选地,所述根据有序恒虚警率判断所述第二雷达数据是否存在相位噪声,包括以下步骤: 将所述第一历史信息熵数组的信息熵进行升序排序,得到第二历史信息熵数组; 从所述第二历史信息熵数组获取任一个信息熵作为第三阈值; 将所述第三阈值乘以一个预设系数得到第四阈值,所述预设系数根据恒虚警率得到; 判断所述第一信息熵是否大于第四阈值,如果所述第一信息熵大于第四阈值,则所述第二雷达数据存在相位噪声。 可选地,所述对所述第一雷达数据进行相位噪声滤除, 把所述第一雷达数据投影到水平角纬度,得到水平角雷达数据; 计算所述水平角雷达数据在第二雷达数据组中出现的第二概率; 根据所述第二概率计算所述水平角雷达数据的第二信息熵; 根据所述第二信息熵,使用前序恒虚警率算法判断所述水平角雷达数据是否存在相位噪声; 如果所述水平角雷达数据存在相位噪声,获取所述水平角雷达数据中距离最小的数据点。 可选地,所述第一雷达数据包括以下的至少一种:水平角、高程角、距离、速度、回波强度。 可选地,所述对所述第一雷达数据进行采样得到第二雷达数据,包括以下步骤: 使用等间距取值采样,每N(N大于等于1)个数据取一个数据点;或, 使用均匀采样,每预设空间中取一个数据点。 可选地,所述计算所述第二雷达数据在各个雷达数据组中出现的第一概率,所述雷达数据组根据雷达数据属性的宽度划分得到,包括以下步骤: 统计所述第二雷达数据在所述雷达数据组中出现的次数; 将所述次数除以所述第二雷达数据的总点数,得到所述第二雷达数据在各个雷达数据组中出现的第一概率。 本发明实施例,利用信息熵量化毫米波雷达数据分散程度,先在采样的各帧上判断是否有相位噪声的存在,找到有相位噪声存在的数据帧,然后计算数据帧中各水平角的信息熵,找到相位噪声并对噪声进行剔除。解决了毫米波雷达中相位噪声影响导致误报漏报的问题,提高了数据质量和准确性。 需要说明的是,在本文中,术语 " 包括 " 、 " 包含 " 或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句 " 包括一个…… " 限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。 上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,控制器,或者网络设备等)执行本发明各个实施例所述的方法。 以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。 一种雷达相位噪声滤波方法、装置、交通工具及存储介质
    展开 >
    交易服务流程
    >

    挑选中意的板块

    ----

    客服确认选择专利的交易信息和价格并支付相应款项

    办理转让材料

    ----

    协助双方准备相应的材料

    签订协议

    ----

    协助卖家签订协议

    办理备案手续

    ----

    买卖双方达成一致后

    交易完成

    ----

    交易完成可投入使用

    过户资料 & 安全保障 & 承诺信息
    >

    过户资料

    买卖双方需提供的资料
    公司 个人
    买家 企业营业执照
    企业组织机构代码证
    身份证
    卖家 企业营业执照
    专利证书原件
    身份证
    专利证书原件
    网站提供 过户后您将获得
    专利代理委托书
    专利权转让协议
    办理文件副本请求书
    发明人变更声明
    专利证书
    手续合格通知书
    专利登记薄副本

    安全保障

    承诺信息

    我方拟转让所持标的项目,通过中国汽车知识产权交易平台公开披露项目信息和组织交易活动,依照公开、公平、公正和诚信的原则作如下承诺:

    1、本次项目交易是我方真实意思表示,项目标的权属清晰,除已披露的事项外,我方对该项目拥有完全的处置权且不存在法律法规禁止或限制交易的情形;
    2、本项目标的中所涉及的处置行为已履行了相应程序,经过有效的内部决策,并获得相应批准;交易标的涉及共有或交易标的上设置有他项权利,已获得相关权利 人同意的有效文件。
    3、我方所提交的信息发布申请及相关材料真实、完整、准确、合法、有效,不存在虚假记载、误导性陈述或重大遗漏;我方同意平台按上述材料内容发布披露信息, 并对披露内容和上述的真实性、完整性、准确性、合法性、有效性承担法律责任;
    4、我方在交易过程中自愿遵守有关法律法规和平台相关交易规则及规定,恪守信息发布公告约定,按照相关要求履行我方义务;
    5、我方已认真考虑本次项目交易行为可能导致的企业经营、行业、市场、政策以及其他不可预计的各项风险因素,愿意自行承担可能存在的一切交易风险;
    6、我方在平台所组织交易期间将不通过其他渠道对标的项目进行交易;
    7、我方将按照平台收费办法及相关交易文件的约定及时、足额支付相关费用,不因与受让方争议或合同解除、终止等原因拒绝、拖延、减少交纳或主张退还相关费用。